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Motivation

Two main approaches of deep learning:

‚ discriminative models
‚ model on the conditional probability of target Y given observation

x of variable X ñ PpY | X “ xq
‚ map high-dimensional, rich sensory data to class label
‚ VGG-nets

‚ generative models
‚ learn unknown distribution of data set to generate new data with

variations
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Motivation
What does it mean to learn a probability distribution?

‚ Classical answer: learn a probability density by defining
parametric family of densities pPθqθPRd and maximize likelihood
on data txiu

m
i“1:

max
θPRd

1

m

m
ÿ

i“1

log Pθpxiq

‚ If real data distribution Pr admits density and Pθ is distribution
of parametrized density Pθ, this amounts to minimizing

DKLpPr || Pθq “
ż

x
log

ˆ

Prpxq

Pθpxq

˙

Prpxqdx

Issues:

‚ Need the model density Pθ to exist.

‚ Computationally difficult to generate samples given arbitrary
high dimensional density.
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Motivation

Solution:

‚ Define RV Z „ Pz and pass it through a parametric function
Gθ : Z Ñ X that directly generates samples following certain
distribution Pθ.

‚ Varying θ can make generated distribution closer to Pr.

‚ Easy generation of samples is often more useful than knowing
the density (e.g. superresolution, segmentation)

‚ Well-known examples: Variational Auto-Encoders (VAEs),
Generative Adversarial Networks (GANs)

November 26, 2020 3/28



Generative adversarial networks

In 2014, John Goodfellow leveraged the idea of highly-developed
discriminative models to overcome approximation difficulties of
generative ones

ñ generative adversarial networks (GANs)

‚ algorithmic architecture consisting of 2 neural networks
Gθg : Z Ñ X and Dθd : X Ñ r0,1s, where X ,Z denote data
space and d-dimensional latent space, respectively

‚ Pr fi distribution over real data space X
‚ Pθg fi distribution over tGθgpzq, z P Zu
‚ Gθg generates samples following generator distribution Pθg .

‚ discriminator D estimates probability that realisation of sample
X came from real data (X „ Pr) rather than from Gθg (X „ Pθg).

‚ Gθg pitted against discriminator Dθd to generate new synthetic
instances

"...the most interesting idea in the last 10 years in machine learning"1.

1Yann LeCunn, research director Facebook AI, Turing Award Recipient 2018
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Generative adversarial networks

‚ minimax two-player game

‚ train Gθg to fool a steadily improving discriminator Dθd

‚ train Dθd to maximize probability of assigning correct labels to
samples drawn from Pθg and Pr respectively

‚ train Gθg to minimize log
`

1´ DθdpGθgpzqq
˘

, z P Z
‚ full objective:

min
θg

max
θd

„

Ex„Pr

“

logDθdpxq
‰

` Ez„N p0,Idq
“

logp1´ DθdpGθgpzqqq
‰



‚ algorithm: alternate between k steps of optimizing Dθd and
and one step of optimizing Gθg
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Generative adversarial networks

Figure: GANs are trained by iteratively updating the discriminative
distribution (blue, dashed) to discriminate between samples from PX (black,
dotted) and from those drawn by the generative distribution PG (green,
solid).
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GAN loss

What does the loss function represent?

‚ We have a well-defined GAN loss function

LpG,Dq “

ż

x

ˆ

Prpxq logpDpxqq ` Pθpxqlogp1´ Dpxqq

˙

dx

Proposition

For G fixed and corresponding generator distribution Pθ, the optimal
discriminator D is

D˚pxq “
Prpxq

Prpxq ` Pθpxq
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GAN loss

Proof.

Let x̃ fi Dpxq and fpx̃q fi Prpxq log x̃` Pθpxq logp1´ x̃q. Then:

dfpx̃q

dx̃
“ Prpxq

1

x̃
´ Pθpxq

1

1´ x̃
“

“
Prpxq ´ pPrpxq ` Pθpxqqx̃

x̃p1´ x̃q

ùñ D˚pxq “
Prpxq

Prpxq ` Pθpxq
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GAN loss

What does the loss function represent?
For optimal D, we obtain

DJSpPr||Pθq “
1

2
DKLpPr||pPr ` Pθq{2q `

1

2
DKLpPθ||pPr ` Pθq{2q “

“
1

2

„

log 2`

ż

x
Prpxq log

Prpxq

Prpxq ` Pθpxq
dx`

` log 2`

ż

x
Pθpxq log

Pθpxq

Prpxq ` Pθpxq
dx



“

“
1

2

`

log 4` LpG,D˚q
˘

ñ LpG,D˚q “ 2 ¨ DJSpPr||Pθq ´ 2 log 2

Therefore, for optimal discriminator D˚ the GAN loss quantifies
distance between Pr and Pθ by the Jensen-Shannon divergence.
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Problems with GANs

‚ Hard to achieve Nash equilibrium:
Nash equilibrium...solution of a non-cooperative game involving
two concurrently players.
Each model updates its cost independently with no respect to
the other one ñ updating models’ gradients concurrently
cannot guarantee a convergence.

‚ Vanishing gradient:
In case of perfect discriminator, i.e. Dpxq “ 1 for all x following
Pr and DpGpzqq “ 0 for z P Z, loss function falls to zero ñ no
gradient for update.
Therefore, GAN faces a dilemma:

1 If the discriminator behaves badly, no valuable updates for the
generator are obtained.

2 If the discriminator is almost perfect, gradient of loss function
drops down and training becomes super slow or stuck.
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Problems with GANs
‚ Low dimensional supports:

Because Pr and Pθ rest in low-dimensional manifolds, they are
almost gonna be disjoint ñ Kullback-Leibler divergence returns
infinity.
Example: Let Z „ Ur0,1s, Pr the distribution of p0,Zq P R2 and
let Gθpzq fi pθ, zq. Then:

DKLpPθ||P0q “

#

8, if θ ‰ 0

0, if θ “ 0
, DJSpPθ||P0q “

#

log 2, if θ ‰ 0

0, if θ “ 0
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Requirements for loss ρ

‚ θ ÞÑ ρpPθ,Prq continuous

‚ no vanishing gradients

‚ high reliable generator updates
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Wasserstein-1 distance
The Wasserstein-1 distance (Earth mover distance) is defined as

W1pP1,P2q “ inf
JPJ pP1,P2q

Epx,yq„J ‖x´ y‖ ,

where P1,P2 are the considered distributions and J pP1,P2q the set
of all joint distributions with marginals P1 and P2. Can also be
formulated in the setting of a optimal mass transport problem,
where one aims to find a transference plan, that transports a unit
mass from one point to another, as cheap as possible regarding a
given cost function.
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Wasserstein-1 distance

Example: Let Z „ Ur0,1s, Pr the distribution of p0,Zq P R2 and let
Gθpzq fi pθ, zq. Then:

W1pPr,Pθq “ |θ|, DJSpPθ||P0q “

#

log 2, if θ ‰ 0

0, if θ “ 0

Figure: Earth mover distance is continuous and provides a usable gradient
everywhere contrary to Jensen-Shannon divergence.
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Wasserstein-1 distance

Theorem

Let Pr be a fixed distribution over X . Let Z be a RV over another
space Z. Let G : Z ˆ Rd Ñ X be a function, that will be denoted
Gθpzq with z the first coordinate and θ the second. Let Pθ denote the
distribution of Gθpzq. Then,

1 If G is continuous in θ, so is W1pPr,Pθq.
2 If G is locally Lipschitz and satisfies regularity assumption

EzLpθ, zq ă 8, then W1pPr,Pθq is continuous everywhere and
differentiable almost everywhere.

3 Statements 1-2 are false for Jensen-Shannon divergence
DJSpPr,Pθq.
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Wasserstein-1 distance

Proof.
Let θ, θ1 P Rd and γ denote the distribution of coupling pGθpZq,Gθ1 pZqq. Then,
γ P J pPθ,Pθ1 q and

W1pPθ,Pθ1 q ď

ż

XˆX
‖x´ y‖ dγ “ Epx,yq„γ ‖x´ y‖ “ Ez ‖Gθpzq ´ Gθ1 pzq‖

G is continuous in θñ Gθpzq ÑθÑθ1 Gθ1 pzq. Furthermore, X is compact
ñ ‖Gθpzq ´ Gθ1 pzq‖ ď M for some constant M and all θ and all z. Due to the
dominated convergence theorem

W1pPθ,Pθ1 q ď Ez ‖Gθpzq ´ Gθ1 pzq‖ÑθÑθ1 0

ñ|W1pPr ,Pθq ´W1pPr ,Pθ1 q| ď W1pPθ,Pθ1 q ÑθÑθ1 0
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Wasserstein-1 distance

Proof.
Let G be locally Lipschitzñ for given pair pθ, zq there exists a constant Lpθ, zq and a
open set U with pθ, zq P U, such that

@pθ1, z1q P U : ‖Gθpzq ´ Gθ1 pzq‖ ď Lpθ, zqp
∥∥θ ´ θ1∥∥` ∥∥z ´ z1

∥∥q
ñEz ‖Gθpzq ´ Gθ1 pzq‖ ď

∥∥θ ´ θ1∥∥EzLpθ, zq

Let Uθ fi tθ1 | pθ1, zq P Uu and Lpθq fi EzLpθ, zq (regularity assumption!). Then:

@θ1 P Uθ : |W1pPr ,Pθq ´W1pPr ,Pθ1 q| ď W1pPθ,Pθ1 q ď Lpθq
∥∥θ ´ θ1∥∥

As a result, W1pPr ,Pθq is locally Lipschitzñ W1pPr ,Pθq is everywhere continuous.
Due to Radamacher’s theorem, we follow it has to be differentiable almost
everywhere.
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Wasserstein-1 distance

Corollary

Let Gθ be any feedforward neural network parametrized by θ, and
ppzq a prior over z such that Ez„ppzq ‖z‖ ă 8 (e.g. Gaussian,
uniform, etc). Then the regularity assumption (from previous
theorem) is satisfied and therefore W1pPr,Pθq is continuous
everywhere and differentiable almost everywhere as function of θ.
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Wasserstein-1 distance

Proof.
We consider the proof for networks composed by affine transformations and smooth
Lipschitz non-linearities (sigmoid, tanh, elu, etc). The proof for relu activations is
much more technical.
Since G is C1 as a function of pθ, zq ñ for any fixed pθ, zq is Lpθ, zq ď

∥∥∇θ,zGθpzq
∥∥` ε

an acceptable local Lipschitz constant for all ε ą 0.
Let H denote the number of layers. Then ∇zGθpzq “ ΠH

k“1WkDk, where Wk are the
weight matrices and Dk the diagonal Jacobians of the non-linearities. Furthermore,
∇Wk Gθpzq “

``

ΠH
i“k`1WiDi

˘

Dk

˘

f1:k´1pzq. Due to the choice of the activation

functions, we have ‖Di‖ ď Lnl for all i “ 1, . . . ,H and some constant Lnl, and

‖f1:k´1pzq‖ ď ‖z‖ Lk´1
nl Πk´1

i“1 Wi. Putting all together:

∥∥∇θ,zGθpzq
∥∥ ď ∥∥ΠH

k“1WkDk

∥∥` H
ÿ

i“1

∥∥``ΠH
i“k`1WiDi

˘

Dk

˘

f1:k´1pzq
∥∥ ď

ď LH
nlpΠ

H
i“1 ‖Wi‖

looooooomooooooon

C1pθq

` ‖z‖ LH
nl

H
ÿ

k“1

`

Πk´1
i“1 ‖Wi‖

˘`

ΠH
i“k`1 ‖Wi‖

˘

looooooooooooooooooooooomooooooooooooooooooooooon

C2pθ

q

ñ Ez„ppzq

∥∥∇θ,zGθpzq
∥∥ ď C1pθq ` C2pθqEz„ppzq ‖z‖ ă 8.
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Wasserstein GAN

‚ For generator feedforward networks the function
θ Ñ W1pPr,Pθq is continuous everywhere and differentiable
almost everywhere ñ might have nicer properties during
optimization than DJSpPr||Pθq

‚ Infimum is highly intractable ñ utilize Kantorovich-Rubinstein
duality:

W1pPr,Pθq “ sup
‖f‖Lď1

“

Ex„Pr fpxq ´ Ex„Pθ
fpxq

‰

‚ Replacing ‖f‖L ď 1 for ‖f‖L ď K in the supremum for some
constant K yields K ¨W1pPr,Pθq

‚ Idea: Utilize parametric family tfwuwPW of K-Lipschitz functions
and consider solving the problem

max
wPW

“

Ex„Pr fwpxq ´ Ez„Pz fwpGθpzqq
‰
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Wasserstein GAN

Theorem

Let Pr be any distribution. Let Pθ be the distribution of GθpZq with
Z „ Pz a RV and Gθ a function satisfying the regularity assumption.
Then, there is a solution f : X Ñ R to the problem

max
‖f‖Lď1

“

Ex„Pr fpxq ´ Ex„Pθ
fpxq

‰

and we have

∇θW1pPr,Pθq “ ´Ez„Pz∇θfpGθpzqq
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Wasserstein GAN

Proof.
Let Vpf̃ , θq fi Ex„Pr f̃pxq ´ Ex„Pθ f̃pxq “ Ex„Pr f̃pxq ´ Ez„Pz f̃pGθpzqq, where

f̃ P F fi tf : X Ñ R | f P CbpX q, ‖f‖L ď 1u. Since X is compact, the

Kantorovich-Rubenstein duality implies that there is an f̃ P F that attains the value

W1pPr ,Pθq “ sup
f̃PF

Vpf̃ , θq “ Vpf , θq

Let X˚pθq fi tf P F | Vpf , θq “ W1pPr ,Pθqu (non empty). Envelope theorem implies
that for all f P X˚pθq the following holds:

∇θW1pPr ,Pθq “ ∇θVpf , θq.

Therefore,

∇θW1pPr ,Pθq “ ∇θVpf , θq “

“ ∇θ
“

Ex„Pr fpxq ´ Ez„Pz fpGθpxqq
‰

“

“ ´∇θ
“

Ez„Pz fpGθpxqq
‰

The proof is completed by showing the commutativity of the gradient and the
expectation value via some technical steps.
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Wasserstein GAN
How to find the critic fw?

1 approximation via a neural network parametrised via weights
vector w in a compact space W

2 backpropagate through Ez„Pz∇θfpGθpzqq

3 To ensure that paramaters w lie in compact space after each
update, weights are clipped to a fixed box e.g. W “ r´0.1,0.1sl

Algorithm:
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Wasserstein GAN
Advantages:
‚ W1 distance is continuous and differentiable a.e.ñ it is possible

to train the critic fw until optimality ñ more reliable generator
updates without facing vanishing gradients

‚ This is not the case for DJS: as the discriminator gets better
(and updates more reliable), the gradients start to vanish since
the true gradient is zero due to saturation.
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Wasserstein GAN

Advantages:

‚ Critics trained until optimality avoid mode collapses during GAN
training.

Figure: Mode collapse - If the generator is trained extensively without
updates to the discriminator, it will converge to find the optimal image
which fools discriminator the most and therefore will become independent
of latent space input. Both networks are then overfitted to exploit
short-term opponent weakness.
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Wasserstein GAN

Figure: Example of a generator trained with standard GAN algorithm
suffering from mode collapse. The model generates similar images for
different latent space input.
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Wasserstein GAN

Advantages:

‚ Wasserstein GAN loss shows properties of convergence, i.e.
one is able to quantify which models are doing better than
others and has not to stare at generated samples during
iteration to detect failure modes.
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Wasserstein GAN

Disadvantages

‚ Clipping weights is a terrible way to enforce Lipschitz
constraint. Large clipping parameters make it harder to train
critic until optimality, small clipping parameter can easily lead
to vanishing gradients for high model complexity.

‚ Wasserstein GAN training becomes instable for momentum
based optimizers such as Adam on the critic (critic loss is
nonstationary!)
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Thank you for your attention!

Christoph Angermann

https://applied-math.uibk.ac.at/
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