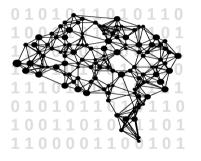


Uncertainty Quantification for Convolutional Neural Networks

Christoph Angermann Supervisor: Markus Haltmeier (Applied Mathematics Group)

https://applied-math.uibk.ac.at/

PhD-Project


- Started 2019
- Project Partners:
 - LEC GmbH https://www.lec.at/
 - INNIO Jenbacher GmbH & Co OG https://www.innio.com/
- Application to large gas engines
- Application to MRI data

Machine Learning

I look at images and apply machine learning.

What is machine learning?

"Machine Learning: A computer is able to learn from experience without being specifically programmed."

What is deep learning?

hachine learning eep learn

Convolutional Neural Network

Convolutional Neural Networks (CNNs) *learn* properties of an image domain \mathcal{X} or relations between two different image domains \mathcal{X} and \mathcal{Y} .

Applications:

Classification (feature detection)

cat

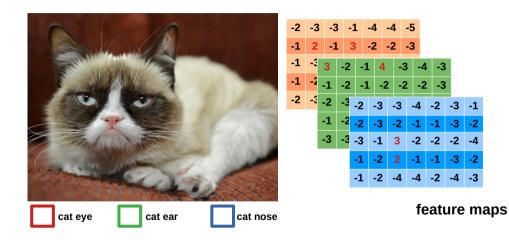
Segmentation (image-to-image)

Convolutional Neural Network

Convolutional Neural Networks (CNNs) *learn* properties of an image domain \mathcal{X} or relations between two different image domains \mathcal{X} and \mathcal{Y} .

Applications:

• Attribute editing



• Style transfer

Detecting Features

Learning Feature Maps

- Training a CNN \triangleq finding appropriate filters $\omega_1, \omega_2, \dots, \omega_J$.
- Image-to-image CNN:

 $f: \mathbb{R}^n \times \mathcal{X} \to \mathcal{Y}, \quad (\Omega, x) \mapsto \operatorname{conv}(\omega_J) \circ \ldots \circ \operatorname{conv}(\omega_1)(x)$

• In practice: amount of filter parameters $n pprox 1 imes 10^6$ to $1 imes 10^9$

Supervised Optimization:

Given N images of interest x_1, x_2, \ldots, x_N (N large)

and corresponding ground truth data t_1, t_2, \ldots, t_N (what we want to predict),

find the **optimal** filters $\Omega_{opt} = \min_{\Omega \in \mathbb{R}^n} \sum_{i=1}^{N} \text{distance}(f(\Omega, x_i), y_i)$

universität innsbruck

Black Boxes

nnsbruck

- CNNs are able to approximate complex image-to-image functions and give good results, at least for images similar to the training data.
- A CNN is referred to as a *black box* model, i.e., while it can approximate any function, studying its structure does not provide any insights of the hidden relation.
- Just show the model a huge amount of available data until the accuracy reaches the project goals.
- \Rightarrow network behavior on **out-of-distribution data** is unknown
- \Rightarrow limits model usability in safety-critical applications

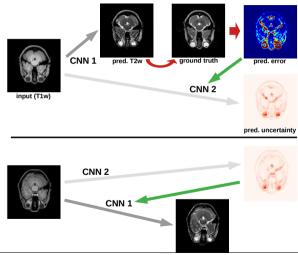
Example (classifier trained on real animals)

Black Boxes

- CNNs are able to approximate complex image-to-image functions and give good results, at least for images similar to the training data.
- A CNN is referred to as a *black box* model, i.e., while it can approximate any function, studying its structure does not provide any insights of the hidden relation.
- Just show the model a huge amount of available data until the accuracy reaches the project goals.
- \Rightarrow network behavior on **out-of-distribution data** is unknown
- \Rightarrow limits model usability in safety-critical applications

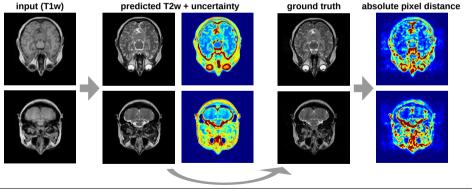
Uncertainty-aware networks

Modality Propagation in MRI


- Application to magnetic resonance imaging (MRI)
- Different available contrasts depending on the pulse sequence:
 - T1-weighted (left): high intensity for tissues (e.g. fat)
 - T2-weighted (right): high intensity for water, liquor

- Acquisition of multiple contrasts is crucial for better diagnosis (e.g. Alzheimer disease)
- However, several successive measurements represent a high burden for the patient with a high cost factor
- **Goal:** Construct an image-to-image function that accounts for uncertainty to synthesize T2-weighted contrasts from T1-weighted measurements

Incorporate Uncertainty

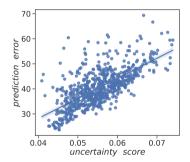


Modality Propagation in MRI

Result:

A position-related confidence map identifies regions in the predictions with less reliability (in the absence of ground truth data)

Qualitative results:



Modality Propagation in MRI

Quantitative results:

- Modeled uncertainty maps can be used to derive an image-based uncertainty score
- The uncertainty score highly correlates with the prediction error (pixel-wise absolute distance)
- During in-field application: modeling quality of the T2w contrast can be inferred by the uncertainty score

Figure: AC, Haltmeier, Siyal: Unsupervised joint image transfer and uncertainty quantification using patch invariant networks (2022)

Concluding Remarks

- Convolutional neural networks enable approximation of complex functions in several imaging tasks
- The uninterpretable structure of CNNs limits their reliability in safety-critical applications
- Leveraging CNNs to uncertainty-aware models yields position-related uncertainty maps during image prediction
- Uncertainty-score enables quality assessment of a prediction during application in the absence of ground truth data

Thank you for your attention!

https://applied-math.uibk.ac.at/ https://ch.risto.ph/

