o Universitat - AppliedMathematics

B innsbruck

Bayesian Learning & Uncertainty

Quantification in Computer Vision
SE Research Seminar: Applied Mathematics

Christoph Angermann
https://applied-math.uibk.ac.at/


https://applied-math.uibk.ac.at/

I. MLE/MAP vs. Bayesian Inference

Il. Epistemic Uncertainty

Ill. Aleatoric Uncertainty

IV. Results

B universitat
innsbruck 2022-05-05

1/12



Point Estimators

Let X = {x1,...,xy} and Y = {y1,...,yn} denote observed
data and corresponding response, respectively.

Let 6 € © denote the model parameters (deterministic
quantities).

* Maximum Likelihood Estimation (MLE)

0 = argmax{p() | X.0)}

* Maximum A Posteriori Estimation (MAP)

0 = argmax{p(0 | X,9)} = argmax{p(y' | X,0) - p(6)}
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Bayesian View

® Parameters are described in a probabilistic way.

® Model parameter 6 is considered a RV, following the posterior
probability distribution p(6 | X, ).

® Bayesian inference returns a probability density on model
parameters = implicit regularization, uncertainty estimates
and robustness through model averaging.

® |nstead of using the best fitting model = obtain a predictive
distribution by using different parameter settings that have
significant posterior probability .

B universitat
B innsbruck 2022-05-05 3/12



Uncertainty Quantification

® Two main types of uncertainty one can model

® Aleatoric uncertainty - captures noise inherent in the
observations; categorized into homoscedastic and
heteroscedastic uncertainty

* Epistemic uncertainty - uncertainty in the model parameters

(systematic/model uncertainty); can be "explained away" given
enough data
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Figure: M. Abdar et al. “A review of uncertainty quantification in deep learning: Techniques,
applications and challenges”. In: Information Fusion 76 (2021), pp. 243-297
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Epistemic Uncertainty

Let fy(-) = Wior(Wi—10.-1(...W1(-))) denote a Bayesian neural
network with parameter 6 = [W+, ..., W,] which is a set of RVs.

Bayes theorem:
p(Y | X,0) - p(0)
p(Y | X)

The model evidence (denominator) in (1) is intractable, which
makes analytical inference hardly possible.

p(0 | X,Y) = (1)

Variational inference - a family Q of parameterized
distributions is searched to locate a distribution which is
complex enough to approximate p(é | X', )) and still is
tractable.

The inference problem is now an optimization problem:

q5(0) = arg min KL(q4(9) | (6 | X, V).

B universitat
B innsbruck 2022-05-05 5/12



Epistemic Uncertainty

® Minimizing the KL divergence is equivalent to maximizing the
evidence lower bound (ELBO), which yields the following loss
functional for the parameter ¢ of the approximating distribution

q4(0):

L) = = Y [ au(®)losp(yi | fo(x)ab +KL(@s(6) | p(6)). (2)

® The expectation over the likelihood function is approximated
via Monte Carlo integration, i.e., g,(6) is replaced by stochastic
samples 0.

¢ Likelihood-term in (2) becomes independent of variational
parameter ¢ during optimization = re-parametrization trick:

0=g(p,€) = 6= g(¢,€) for a stochastic quantity e.

® Example: Monte Carlo dropout inference
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Monte Carlo dropout inference

® Recall: fg() = WLO'L(WL,]_UL,]_(. . Wl())) with 0 = [Wl, ey WL]
a set of RVs.

® Let ¢ = [My,...,M.] be a set of deterministic weights and
W, = diag(e/) - M, for I =1,...,L and ¢ ~ Bernoulli.

® Equivalent to applying Dropout during train and test phase.

® Transforming the stochasticity from the weight parameters to
€= [e1,...,¢] yields

0 = [diag(e1) - My, ..., diag(e.) - M.] = g(¢, €)

and
N
Lu(o) = _ZIng(YI | fo(p,6)(Xi)) + KL(q(0) || P(0)).
i=1
* Final prediction for test sample x* and realizations €!,...,€:

Predictive mean: 1 37 | £, o(x*)

2
Predictive var.: % Zz-:l fg(d)’ef)(x*)z — (% Zz-:l fg(qg’er)(x*))
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Heteroscedastic Aleatoric Uncertainty

® Consider the negative log-likelihood objective

Lue(0) = 5 D" logp(ys | fa(x).

® |n regression, a Gaussian likelihood with the observations noise
parameter o can be assumed:
N

1 1 ] 1,
LMLE(H) = N ; |:M Hy/ - f@(xj)H :| + E |Og0’ .

® Due to heteroscedasticity, observation noise ¢ vary with input
x; and therefore is learned as a function of the data:

N

1 1 1

Lae(9.7) = 3 3= | g 1~ DI + 5 o
i=1

Neural networks fy and f, nearly share all the parameters.
Learned loss attenuation makes the model more robust to noisy
data.
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Combining Aleatoric & Epistemic
Uncertainty

® Goal: infer the predictive distribution p(y* | x*,0) for a
Bayesian neural network (BNN) fp : X' — ) that gives also a
measure of aleatoric uncertainty.

* Let [y}, 5] = fy(4.¢)(Xi) and the entries of € follow a Bernoulli
distribution. Then:

N
Lenn(¢ l Z

i=1

. 1,
—=5i) [lyi — y,-||+55,-.

N\I—'

® Final prediction for input x* and T sampled outputs y3,..., yi:

= as L1 T  ~x
Predictive mean: :> ., J;

2
Predictive var.: 27 (57)? — (% ST, y:) + 13T exp(3)
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Depth Regression - Qualitative Results

® Aleatoric uncertainty (AU) is greater for larger depths,
reflective surfaces and occlusion boundaries.
® Larger epistemic uncertainty (EU) for objects which are rare in
the training set (e.g. humans).
"

Figure: From left to right: input image, ground truth, depth regression,

aleatoric uncertainty and epistemic uncertainty.
A. Kendall and Y. Gal. “What uncertainties do we need in bayesian deep learning for computer
vision?” In: Advances in neural information processing systems 30 (2017)
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Depth Regression - Quantitative Results

® RMSE decreases by removing pixels with uncertainty larger
than percentile thresholds = good correlation between model
performance and uncertainty measurements.

® Curves for EU and AU models are quite similar = each
uncertainty ranks pixel confidence similarly to the other
uncertainty (in the absence of the other uncertainty).

0

Precision (RMS Error)

= Aleatoric Uncertainty
===+ Epistemic Uncertainty
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Figure: Accuracy (RMSE) vs. complementary percentage of removed
pixels.

A. Kendall and Y. Gal. “What uncertainties do we need in bayesian deep learning for computer
vision?” In: Advances in neural information processing systems 30 (2017)
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Depth Regression - Quantitative Results

Train Test Aleatoric | Epistemic
dataset dataset RMS | variance | variance
Make3D /4 | Make3D | 5.76 0.506 7.73
Make3D /2 | Make3D | 4.62 0.521 4.38
Make3D Make3D | 3.87 0.485 2.78
Make3D /4 | NYUv2 - 0.388 15.0
Make3D NYUv2 - 0.461 4.87

Figure: A. Kendall and Y. Gal. “What uncertainties do we need in bayesian deep learning for
computer vision?” In: Advances in neural information processing systems 30 (2017)

® AU cannot be explained away with more data.

® AU does not increase for out-of-data examples, whereas EU
does.

e AU for: large data situations, real-time applications.

® EU for: safety-critical applications, small datasets.
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