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Point Estimators

• Let X = {x1, . . . , xN} and Y = {y1, . . . , yN} denote observed
data and corresponding response, respectively.

• Let θ ∈ Θ denote the model parameters (deterministic
quantities).

• Maximum Likelihood Estimation (MLE)

θ̂ = arg max
θ
{p(Y | X , θ)}

• Maximum A Posteriori Estimation (MAP)

θ̂ = arg max
θ
{p(θ | X ,Y)} = arg max

θ
{p(Y | X , θ) · p(θ)}
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Bayesian View

• Parameters are described in a probabilistic way.

• Model parameter θ is considered a RV, following the posterior
probability distribution p(θ | X ,Y).

• Bayesian inference returns a probability density on model
parameters⇒ implicit regularization, uncertainty estimates
and robustness through model averaging.

• Instead of using the best fitting model⇒ obtain a predictive
distribution by using different parameter settings that have
significant posterior probability .
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Uncertainty Quantification
• Two main types of uncertainty one can model
• Aleatoric uncertainty - captures noise inherent in the

observations; categorized into homoscedastic and
heteroscedastic uncertainty

• Epistemic uncertainty - uncertainty in the model parameters
(systematic/model uncertainty); can be "explained away" given
enough data

Figure: M. Abdar et al. “A review of uncertainty quantification in deep learning: Techniques,
applications and challenges”. In: Information Fusion 76 (2021), pp. 243–297
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Epistemic Uncertainty

• Let fθ(·) = WLσL(WL−1σL−1(. . .W1(·))) denote a Bayesian neural
network with parameter θ = [W1, . . . ,WL] which is a set of RVs.

• Bayes theorem:

p(θ | X ,Y) =
p(Y | X , θ) · p(θ)

p(Y | X )
(1)

• The model evidence (denominator) in (1) is intractable, which
makes analytical inference hardly possible.

• Variational inference - a family Q of parameterized
distributions is searched to locate a distribution which is
complex enough to approximate p(θ | X ,Y) and still is
tractable.

• The inference problem is now an optimization problem:

q∗φ(θ) = arg min
qφ∈Q

KL(qφ(θ) || p(θ | X ,Y)).
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Epistemic Uncertainty

• Minimizing the KL divergence is equivalent to maximizing the
evidence lower bound (ELBO), which yields the following loss
functional for the parameter φ of the approximating distribution
qφ(θ):

LVI(φ) = −
N∑
i=1

∫
qφ(θ) log p(yi | fθ(xi))dθ+ KL(qφ(θ) || p(θ)). (2)

• The expectation over the likelihood function is approximated
via Monte Carlo integration, i.e., qφ(θ) is replaced by stochastic

samples θ̂.

• Likelihood-term in (2) becomes independent of variational
parameter φ during optimization⇒ re-parametrization trick:

θ = g(φ, ε)⇒ θ̂ = g(φ, ε̂) for a stochastic quantity ε.

• Example: Monte Carlo dropout inference
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Monte Carlo dropout inference
• Recall: fθ(·) = WLσL(WL−1σL−1(. . .W1(·))) with θ = [W1, . . . ,WL]

a set of RVs.
• Let φ = [M1, . . . ,ML] be a set of deterministic weights and
Wl = diag(εl) ·Ml for l = 1, . . . , L and εl ∼ Bernoulli.

• Equivalent to applying Dropout during train and test phase.
• Transforming the stochasticity from the weight parameters to

ε = [ε1, . . . , εL] yields

θ = [diag(ε1) ·M1, . . . ,diag(εL) ·ML] = g(φ, ε)

and

LVI(φ) = −
N∑
i=1

log p(yi | fg(φ,ε̂)(xi)) + KL(qφ(θ) || p(θ)).

• Final prediction for test sample x∗ and realizations ε1, . . . , εT:

Predictive mean: 1
T

∑T
t=1 fg(φ,εt)(x

∗)

Predictive var.: 1
T

∑T
t=1 fg(φ,εt)(x

∗)2 −
(

1
T

∑T
t=1 fg(φ,εt)(x

∗)
)2
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Heteroscedastic Aleatoric Uncertainty
• Consider the negative log-likelihood objective

LMLE(θ) =
1

N

N∑
i=1

log p(yi | fθ(xi)).

• In regression, a Gaussian likelihood with the observations noise
parameter σ can be assumed:

LMLE(θ) =
1

N

N∑
i=1

[
1

2σ2
‖yi − fθ(xi)‖2

]
+

1

2
log σ2.

• Due to heteroscedasticity, observation noise σ vary with input
xi and therefore is learned as a function of the data:

Lalea(θ, ρ) =
1

N

N∑
i=1

[
1

2fρ(xi)2
‖yi − fθ(xi)‖2 +

1

2
log fρ(xi)

2

]
.

• Neural networks fθ and fρ nearly share all the parameters.
• Learned loss attenuation makes the model more robust to noisy

data.
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Combining Aleatoric & Epistemic
Uncertainty

• Goal: infer the predictive distribution p(y∗ | x∗, θ) for a
Bayesian neural network (BNN) fθ : X → Y that gives also a
measure of aleatoric uncertainty.

• Let [ŷi, ŝi] = fg(φ,ε)(xi) and the entries of ε follow a Bernoulli
distribution. Then:

LBNN(φ) =
1

N

N∑
i=1

1

2
exp(−ŝi) ‖yi − ŷi‖+

1

2
ŝi.

• Final prediction for input x∗ and T sampled outputs ŷ∗1, . . . , ŷ
∗
T:

Predictive mean: 1
T

∑T
t=1 ŷ

∗
t

Predictive var.: 1
T

∑T
t=1(ŷ∗t )2 −

(
1
T

∑T
t=1 ŷ

∗
t

)2
+ 1

T

∑T
t=1 exp(ŝt)
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Depth Regression - Qualitative Results
• Aleatoric uncertainty (AU) is greater for larger depths,

reflective surfaces and occlusion boundaries.
• Larger epistemic uncertainty (EU) for objects which are rare in

the training set (e.g. humans).

Figure: From left to right: input image, ground truth, depth regression,
aleatoric uncertainty and epistemic uncertainty.
A. Kendall and Y. Gal. “What uncertainties do we need in bayesian deep learning for computer
vision?” In: Advances in neural information processing systems 30 (2017)
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Depth Regression - Quantitative Results
• RMSE decreases by removing pixels with uncertainty larger

than percentile thresholds⇒ good correlation between model
performance and uncertainty measurements.

• Curves for EU and AU models are quite similar⇒ each
uncertainty ranks pixel confidence similarly to the other
uncertainty (in the absence of the other uncertainty).

Figure: Accuracy (RMSE) vs. complementary percentage of removed
pixels.
A. Kendall and Y. Gal. “What uncertainties do we need in bayesian deep learning for computer
vision?” In: Advances in neural information processing systems 30 (2017)
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Depth Regression - Quantitative Results

Figure: A. Kendall and Y. Gal. “What uncertainties do we need in bayesian deep learning for
computer vision?” In: Advances in neural information processing systems 30 (2017)

• AU cannot be explained away with more data.

• AU does not increase for out-of-data examples, whereas EU
does.

• AU for: large data situations, real-time applications.

• EU for: safety-critical applications, small datasets.
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